Regolarità di Castelnuovo-Mumford

Vincenzo Galgano

23 luglio 2017

Sommario

In questa trattazione presentiamo la regolarità di Castelnuovo-Mumford, sia per moduli che per fasci coerenti, analizzando il caso di varietà aritmeticamente Cohen-Macaulay. Inoltre, dimostriamo il teorema di Castelnuovo-Mumford su fasci coerenti m-regolari e deduciamo la normale generazione di divisori D su una curva proiettiva liscia X nel caso $\deg(D) \geq 2g(X)$. Infine, enunciamo una generalizzazione del teorema di Castelnuovo su fasci ivertibili.

Indice

1	Noz	zioni preliminari	2
	1.1	Profondità, anelli di Cohen-Macaulay e sizigie	2
	1.2	Coomologia locale	3
2	Reg	golarità di Castelnuovo-Mumford	4
	2.1	Regolarità di moduli	4
	2.2	Varietà aritmeticamente Cohen-Macaulay	5
	2.3	Regolarità di fasci coerenti	5
	2.4	Regolarità e divisori normalmente generati	6

1 Nozioni preliminari

1.1 Profondità, anelli di Cohen-Macaulay e sizigie

Fissiamo A anello noetheriano ed M A-modulo finitamente generato.

 $S \doteq \mathbb{K}[x_0 \dots x_r]$ (anello delle coordinate omogenee di $\mathbb{P}^r_{\mathbb{K}}$) $\mathfrak{m}_s \doteq (x_1 \dots x_r) \subset S$ (id. irrilevante di S) $\mathrm{supp}(M) \doteq \{\mathfrak{p} \in \mathrm{Spec}(A) | M_{\mathfrak{p}} \neq 0\} = V(\mathrm{Ann}_A(M))$ (supporto) $\mathrm{Ass}_A(M) \doteq \{\mathfrak{p} \in \mathrm{Spec}(A) | A/p \hookrightarrow M\}$ (primi associati) $\mathrm{pd}(M) \doteq \min\{n | \exists \text{ risoluzione proiettiva di lunghezza n} \}$ (dim. proiettiva) $\mathrm{dim}(A) \doteq \max\{n | \exists \mathfrak{p}_0 \subset \mathfrak{p}_1 \subset \mathfrak{p}_n \subset A \text{ primi} \}$ (dim. di Krull)

Una successione di elementi $a_1, \ldots, a_k \in A$ è M-regolare se a_1 non è divisore dello zero per M e $\forall i > 1$ a_i non è divisore dello zero per $M/(a_1 \ldots a_{i-1})M$. Poichè A è noetheriano, le successioni M-regolari sono finite. Vale il seguente:

Teorema (Grothendieck). Sia I ideale di A tale che $IM \neq M$ e sia n > 0. Sono equivalenti:

1. $\forall k < n, \forall NA$ -mod f.g. con $\text{supp}(N) \subset V(I), \text{ Ext}_A^k(N, M) = 0;$

 $\dim_A(M) \doteq \dim(A/\operatorname{Ann}_A(M))$ (dim. di A-modulo)

- 2. $\forall k < n, \operatorname{Ext}_A^k(A/I, M) = 0;$
- 3. $\exists a_1 \dots a_n \in I$ successione *M*-regolare.

Sia $IM \neq M$. Definiamo profondità del modulo M rispetto all'ideale I

$$depth(I, M) = max\{k | \exists a_1 \dots a_k \in IM\text{-regolare}\}\$$

Notiamo che dal teorema precedente segue la definizione equivalente

$$depth(I, M) \doteqdot \min\{i | \operatorname{Ext}_A^i(A/I, M) \neq 0\}$$

Nel caso di (A, \mathfrak{m}) anello locale indichiamo $\operatorname{depth}(M) = \operatorname{depth}(\mathfrak{m}, M)$. Valgono le seguenti proprietà:

- 1. (A locale) depth(M) = 0 se e solo se $\mathfrak{m} \in \mathrm{Ass}_A(M)$;
- 2. $\forall \mathfrak{p} \in Spec(A)$, $depth(M_{\mathfrak{p}}) = 0$ se e solo se $\mathfrak{p} \in Ass_A(M)$;
- 3. se $\mathfrak{p} \in \mathrm{Ass}_A(M)$, allora depth $(\mathfrak{p}, M) = 0$;
- 4. $\forall \mathfrak{p} \in \operatorname{Spec}(A), \operatorname{depth}(M_{\mathfrak{p}}) \geq \operatorname{depth}(\mathfrak{p}, M);$
- 5. (A locale) $\forall \mathfrak{p} \in Ass_A(M)$, $\operatorname{depth}(M) \leq \dim(A/\mathfrak{p})$.

Teorema (Auslander-Buchsbaum). depth(A) = depth(M) + pd(M)

Un anello noetheriano locale (A, \mathfrak{m}) è regolare se \mathfrak{m} può essere generato con esattamente $\dim(A)$ generatori, o equivalentemente se $\dim_{A/\mathfrak{m}}(\mathfrak{m}/\mathfrak{m}^2) = \dim(A)$. In generale, per anelli locali vale $\operatorname{depth}(M) \leq \dim(A_{\mathfrak{m}})$. Se A è regolare, vale l'uguaglianza.

Un anello A è Cohen-Macaulay (CM) se $\forall \mathfrak{m} \in Max(A)$ vale $depth(\mathfrak{m}, A) = dim(A_{\mathfrak{m}})$. Da quanto detto prima, gli anelli locali regolari sono CM. Inoltre, essere CM è una proprietà locale e vale la seguente caratterizzazione: A CM se e solo se A[x] CM.

Fissiamo ora $M = \bigoplus_{d>0} M_d$ S-modulo graduato finitamente generato.

Data $H_M(d) \doteq \dim_{\mathrm{sp.vett.}} M_d$ la funzione di Hilbert, vogliamo calcolare $H_M(d)$ confrontando M con moduli liberi attraverso delle risoluzioni libere. Definisco modulo di twist di grado a il modulo graduato M(a) tale che $M(a)_d = M_{d+a}$, ossia ottenuto traslando i gradi di a. Dato $\{m_1 \dots m_k\}$ un sistema di generatori per M di grado rispettivamente a_i , definiamo $\phi_0: F_0 \doteq \oplus S(-a_i) \to M$ in modo che $e_i \mapsto m_i$ e noto che il twist garantisce la conservazione del grado. Definiamo dunque $M_1 \doteq \mathrm{Ker}(\phi_0)$ modulo delle sizigie di M (è finitamente generato per il teorema della base di Hilbert). Iterando il processo sui generatori omogenei di M_1 (e così via) otteniamo la risoluzione libera graduata $\cdots \stackrel{\phi_i}{\to} F_{i-1} \stackrel{\phi_{i-1}}{\to} \cdots \stackrel{\phi_2}{\to} F_1 \stackrel{\phi_1}{\to} F_0$ di M. Poichè ciascun ϕ_i preserva il grado, otteniamo una successione esatta delle componenti omogenee come spazi vettoriali finiti e poniamo $H_M(d) = \sum_{i=0:\infty} (-1)^i H_{F_i}(d)$. In realtà questa somma è finita, come garantito dal seguente teorema.

Teorema (Sizigie di Hilbert). Ogni S-modulo graduato finitamente generato ammette una risoluzione graduata libera finita di lunghezza $\geq r+1$.

Possiamo allora ottenere una formula più esplicita per il calcolo di $H_M(d)$. Sia \mathbf{F} una risoluzione graduata libera m-finita per M con $F_i = \bigoplus_j S(-a_{i,j})$ S-moduli finitamente generati. Allora

$$H_M(d) = \sum_{i=0:m} (-1)^i \sum_j \binom{r+d-a_{i,j}}{r}$$

1.2 Coomologia locale

Siano (X, \mathcal{O}_X) spazio anellato, $Z \subset X$ chiuso, \mathscr{F} fascio di \mathcal{O}_X -moduli. Il funtore $\Gamma_Z : \mathscr{F} \mapsto \operatorname{Ker}[\rho^X_{X \setminus Z} : \mathscr{F}(X) \to \mathscr{F}(X \setminus Z)] = \{s \in \mathscr{F}(X) | s_x = 0 \forall x \notin Z\}$ è esatto a sinistra e possiamo considerarne il funtore derivato destro, definendo $H^i_Z(\mathscr{F})$ come l'*i-esimo gruppo di coomologia locale* di \mathscr{F} a supporto in Z.

Vogliamo ora definire il gruppo di coomologia locale di un A-modulo M. Poniamo $H_I^0(M) \doteqdot \{m \in M | \exists r : mI^r = 0\} = \bigcup_{n \geq 0} (0 : I^n) \cong \varinjlim \operatorname{Hom}_A(A/I^n, M)$. Il funtore $H_i^0(-) : M \mapsto H_I^0(M)$ è esatto a sinistra, quindi ammette funtori derivati destri $H_I^i(-)$. Definiamo dunque $H_I^i(M)$ come l'i-esimo modulo di coomologia locale di M a supporto in V(I). Nel caso di (A, \mathfrak{m}) locale, $H_\mathfrak{m}^i(M)$ è l'i-esimo modulo di coomologia locale di M. Notiamo inoltre che l'i-esimo funtore derivato destro di $\operatorname{Hom}_A(A/I^n, M)$ è proprio $\operatorname{Ext}_A^i(A/I^n, M)$: segue dunque che $H_I^i(M) \cong \lim_{n \to \infty} \operatorname{Ext}_A^i(A/I^n, M)$.

Vediamo dunque una relazione tra la coomogia locale di un modulo e la sua profondità.

Proposizione. Siano A anello noetheriano, M A-modulo finitamente generato e I ideale tale che $IM \neq M$. Allora depth $(I, M) = \min\{i | H_I^i(M) \neq 0\}$.

2 Regolarità di Castelnuovo-Mumford

2.1 Regolarità di moduli

Sia M un S-modulo graduato finitamente generato e sia $\cdots \to F_i \to F_i - 1 \to \cdots \to F_0$ una sua risoluzione libera minimale con $F_i = \bigoplus_j S(-a_{i,j})^{\beta_{i,j}}$. Definiamo regolarità di M

$$reg(M) \doteq \max_{i,j} \{a_{i,j} - i | i, j \ge 0\}$$

Vediamo ora una caratterizzazione della regolarità di un modulo in termini della sua coomologia locale. Per una dimostrazione del seguente teorema e della proposizione successiva, si rimanda a *The Geometry of Syzygies* di D. Eisenbud [ch. 4].

Teorema 1 (Caratterizzazione della regolarità). Sono equivalenti:

- 1. $d \ge \operatorname{reg}(M)$;
- 2. $d \ge \max\{e|H_{\mathfrak{m}}^{i}(M)_{e} \ne 0\} + i, \ \forall i \ge 0;$
- 3. $d \ge \max\{e|H_{\mathfrak{m}}^0(M)_e \ne 0\} \in H_{\mathfrak{m}}^i(M)_{d-i+1} = 0, \ \forall i > 0.$

Diciamo che M è debolmente d-regolare se $H^i_{\mathfrak{m}}(M)_{d-i+1}=0, \ \forall i>0$, mentre è d-regolare se è dolmente d-regolare e $d \geq \operatorname{reg}(H^0_{\mathfrak{m}}(M))$.

Corollario. M è d-regolare se e solo se $d \ge \operatorname{reg}(M)$.

Possiamo dunque definire la regolarità di un modulo in funzione solo della sua coomologia locale

$$reg(M) \doteq min\{d \mid M \text{ } d\text{-regolare}\}\$$

Tuttavia affinchè tale definizione sia utile, occorre che la regolarità degli $H^i_{\mathfrak{m}}(M)$ sia facilmente calcolabile. A breve vedremo che lo è per moduli artiniani, e un teorema di dualità locale garantisce che, se M è un S-modulo graduato finitamente generato, allora $H^i_{\mathfrak{m}}(M)$ è S-modulo graduato artiniano.

Per ogni $x \in S$ consideriamo il sottomodulo $(0:_M x) = \{m \in M | xm = 0\} \subset M$. Vale che $(0:_M x) = 0$ se e solo se x è elemento regolare di M (ossia non è divisore dello zero). Diciamo che x è quasi-regolare su M se $l(0:_M x) < \infty$. Vale il seguente risultato.

Lemma. Se \mathbb{K} è infinito, esiste f polinomio omogeneo che sia quasi-regolare su M.

Proposizione 2. Sia $x \in S$ un polinomio lineare omogeneo quasi-regolare su M. Allora:

- 1. se M è debolmente d-regolare, allora M/xM è debolmente d-regolare;
- 2. se M è (deb. nte) d-regolare, allora M è (deb. nte) (d+1)-regolare;

Dall'ultimo punto della proposizione segue che:

Corollario. Se x è quasi-regolare su M, allora $\operatorname{reg}(M) = \max\{\operatorname{reg}(H_{\mathfrak{m}}^0(M)), \operatorname{reg}(M/xM)\}.$

Abbiamo allora un'importante caratterizzazione della regolarità per moduli di lunghezza finita:

Corollario. Se $l(M) < \infty$, allora $\operatorname{reg}(M) = \max\{d | M_d \neq 0\}$.

Abbiamo quindi un'altra definizione di regolarità nel caso artiniano. Dato M un S-modulo graduato artiniano, definiamo

$$reg(M) = max\{d|M_d \neq 0\}$$

In particolare, la regolarità di un modulo artiniano non dipende dalla sua struttura di S-modulo, ossia non dipende dall'anello S ma dalla sua graduazione.

2.2 Varietà aritmeticamente Cohen-Macaulay

Sia M un S modulo graduato finitamente generato. Sia $x \in S$ regolare per M (ossia non divisore dello zero): allora $\operatorname{depth}(M) \geq 1$. Poichè $\operatorname{depth}(M) = \min\{i | H^i_{\mathfrak{m}}(M) \neq 0\}$, si ha $H^0_{\mathfrak{m}}(M) = 0$. Dal punto (3) della proposizione 2 e dalla caratterizzazione della regolarità, sappiamo che $\operatorname{reg}(M) = \operatorname{reg}(M/xM)$. Per moduli di Cohen-Macaulay (CM) posso estendere tale relazione ad un'intera successione regolare.

Proposizione. Sia M un S-modulo CM e sia $(y_1 \dots y_k)$ una successione M-regolare massimale di polinomi lineari. Allora

$$reg(M) = max\{d|(M/(y_1...y_k)M)_d \neq 0\}$$

Siano $X \subset \mathbb{P}^r_{\mathbb{K}}$ una varietà proiettiva, I_X il suo ideale associato ed $S_X \doteqdot S/I_X$ il suo anello delle coordinate. Diciamo che X è non degenere se non è contenuta in alcun iperpiano.

Definiamo la regolarità della varietà proiettiva X come $reg(X) = reg(I_X)$. Notiamo che $reg(I_X) = reg(S_X) + 1$. Una varietà proiettiva è artimeticamente Cohen-Macaulay (ACM) se il suo anello delle coordinate S_X è CM. La regolarità di varietà ACM può essere limitata dall'alto in termini puramente geometrici. Vale infatti:

Teorema. Sia $X \subset \mathbb{P}^r_{\mathbb{K}}$ una varietà ACM non degenere. Allora

$$reg(S_X) \le deg(X) + codim(X)$$

2.3 Regolarità di fasci coerenti

Vediamo ora la teoria originale della regolarità sviluppata da Mumford per fasci coerenti. Fissiamo $\mathbb{P}^r = \mathbb{P}^r_{\mathbb{K}}$. Quanto vedremo vale in generale per ogni varietà proiettiva $X \subset \mathbb{P}^r$, ma per comodità lavoreremo su $X = \mathbb{P}^r$. Dato \mathscr{F} un fascio algebrico coerente su X, indichiamo con $\mathscr{F}(k) \doteqdot \mathscr{F} \otimes_{\mathcal{O}_{\mathbb{P}^r}} \mathcal{O}_{\mathbb{P}^r}(k) \ \forall k \in \mathbb{Z}$.

Il fascio \mathscr{F} è m-regolare se $\forall i > 0$ vale $H^i(X, \mathscr{F}(m-i)) = 0$. Notiamo che ogni fascio coerente è m-regolare per qualche m: infatti dal teorema di annullamento di Serre sappiamo che $\exists n_0$ tale che $H^i(X, \mathscr{F}(n)) = 0 \ \forall n \geq n_0, \forall i$ e che $H^i(X, \mathscr{F}(n)) = 0 \ \forall i > \dim X, \forall n$, per cui pasta porre $m = n_0 + \dim X$.

Definiamo la regolarità di Castelnuovo-Mumford di un fascio coerente \mathscr{F} come

$$\operatorname{reg}(\mathscr{F})\doteqdot\min\{m|\mathscr{F}\ m\text{-regolare}\}$$

Vediamo quindi come questa regolarità si lega a quella definita via coomologia locale per moduli.

Proposizione 3. Sia M un S-modulo graduato finitamente generato e sia \tilde{M} il fascio coerente su X associato a M. Allora M è d-regolare se e solo se:

- 1. \tilde{M} è d-regolare;
- 2. $H_{\mathfrak{m}}^{0}(M)_{e} = 0, \ \forall e > d;$
- 3. $M_d \to H^0(\tilde{M}(d))$ è surgettiva.

Dimostrazione. Sappiamo che $H^i_{\mathfrak{m}}(M)_e = H^{i-1}(X, \tilde{M}(e)) \ \forall i \geq 2$. Segue che M è d-regolare se e solo se valgono (1), (2) e $H^1_{\mathfrak{m}}(M)_e = 0 \ \forall e \geq d$. Dall'esattezza di

$$0 \to H^0_{\mathfrak{m}}(M)_e \to M_e \to H^0(X, \tilde{M}(e)) \to H^1_{\mathfrak{m}}(M)_e \to 0$$

segue che (3) è equivalente alla condizione $H^1_{\mathfrak{m}}(M)_e = 0 \ \forall e \geq d$.

Corollario. Vale $\operatorname{reg}(M) \geq \operatorname{reg}(\tilde{M})$. In particolare, si ha l'uguaglianza se e solo se $M = \bigoplus_n H^0(X, \tilde{M}(n))$.

Dimostrazione. La condizione sull'uguaglianza segue dalla successione esatta vista nella dimostrazione precedente. Per verificare la disuguaglianza, consideriamo \tilde{M} reg(M)-regolare, ossia $H^p(X, \tilde{M}(\operatorname{reg}(M)-p)) = 0$, $\forall p > 0$. Per $p \geq 2$ vale l'isomorfismo $H^{p-1}(X, \tilde{M}(\operatorname{reg}(M)-p+1)) \cong H^p_{\mathfrak{m}}(M)_{\operatorname{reg}(M)-p+1}$. Ma $\forall p \geq 1$, $H^p_{\mathfrak{m}}(M)_{\operatorname{reg}(M)-p+1} = 0$. Segue che $\forall p \geq 1$, $H^p(X, \tilde{M}(\operatorname{reg}(M)-p)) = 0$, ossia $\operatorname{reg}(\tilde{M}) \leq \operatorname{reg}(M)$.

Partiamo ora da un fascio coerente \mathscr{F} non nullo su X e definiamo l' S-modulo graduato associato come $R(\mathscr{F}) \doteq \bigoplus_n H^0(X, \mathscr{F}(n))$. Notiamo che in generale questo modulo non è finitamente generato, ma lo è ogni suo troncamento $R_{n_0}(\mathscr{F}) \doteq \bigoplus_{n \geq n_0} H^0(X, \mathscr{F}(n))$. Per tali moduli vale $\operatorname{reg}(R_{n_0}(\mathscr{F})) = \max\{\operatorname{reg}(\mathscr{F}), n_0\}$. Vale inoltre il seguente risultato che ritroveremo nell'ultima sezione.

Corollario 4. Sia \mathscr{F} coerente d-regolare. Allora $\mathscr{F}(d)$ è generato dalle sezioni globali. Inoltre, \mathscr{F} è e-regolare $\forall e \geq d$.

Dimostrazione. Il modulo $M=R_d(\mathscr{F})$ è d-regolare per quanto detto sopra, quindi generato da elementi di grado d, ossia da $H^0(\mathscr{F}(d))$. Poichè $\tilde{M}=\mathscr{F},\,\mathscr{F}(d)$ è generato dalle sezioni globali. Inoltre, per la proposizione 2 M è e-regolare $\forall e \geq d$ e sempre per quanto detto sopra abbiamo che \mathscr{F} è e-regolare.

2.4 Regolarità e divisori normalmente generati

Il risultato principale provato da Mumford ma da lui stesso attribuito a Castelnuovo è il seguente:

Teorema 5 (Castelnuovo-Mumford). Sia \mathscr{F} un fascio m-regolare. Allora:

1. \mathscr{F} è *n*-regolare $\forall n \geq m$;

2. vi è una surgezione $H^0(X, \mathscr{F}(p-1)) \otimes H^0(X, \mathcal{O}_X(1)) \to H^0(X, \mathscr{F}(p)), \ \forall p > m.$

Dimostrazione. Ragioniamo per induzione su $r = \dim \mathbb{P}^r$. Per r = 0 il risultato è ovvio. Sia r > 0 e scegliamo un iperpiano $H \subset \mathbb{P}^r = X$ tale che $H \cap \operatorname{supp}(\mathscr{F}) = \emptyset$. Consideriamo la successione esatta tensorizzata

$$\mathscr{F}(p) \otimes [0 \to \mathcal{O}_X(-H) \cong \mathcal{O}_X(-1) \to \mathcal{O}_X \to \mathcal{O}_H \to 0]$$

Per ogni $x \in X$, se f è un'equazione locale per H in x, la moltiplicazione per f in \mathscr{F}_x è iniettiva, poichè per costruzione f è invertibile per tutti i primi associati a \mathscr{F}_x . Abbiamo quindi la sequenza esatta

$$0 \to \mathscr{F}(p-1) \to \mathscr{F}(p) \to (\mathscr{F} \otimes \mathcal{O}_H)(p) \to 0$$

da cui $H^i(\mathscr{F}(m-i)) \to H^i(\mathscr{F}_H(m-i)) \to H^{i+1}(\mathscr{F}_H(m-i-1))$ è esatta. Allora se \mathscr{F} è m-regolare, il fascio \mathscr{F}_H su H è m-regolare. Poichè $H \cong \mathbb{P}^{r-1}$, applichiamo l'ipotesi induttiva sul fascio \mathscr{F}_H ; in particolare, $H^{i+1}(\mathscr{F}(m-i-1)) \to H^{i+1}(\mathscr{F}(m-i)) \to H^{i+1}(\mathscr{F}_H(m-i))$. Se $i \geq 0$, $H^{i+1}(\mathscr{F}_H(m-i)) = 0$ (per il punto (1) applicato a \mathscr{F}_H) e $H^i + 1(\mathscr{F}(m-i-1)) = 0$ (per m-regolarità di \mathscr{F}): segue che $H^i + 1(\mathscr{F}(m-i)) = 0$, ovvero \mathscr{F} è (m+1)-regolare. Iterando, si ottiene il punto (1).

Consideriamo il diagramma

$$H^{0}(\mathscr{F}(p-1))\otimes H^{0}(\mathcal{O}_{X}(1))\overset{\sigma}{\to}H^{0}(\mathscr{F}_{H}(p-1))\otimes H^{0}(\mathcal{O}_{H}(1))$$

$$\downarrow^{\tau}$$

$$H^{0}(\mathscr{F}(p-1))\to H^{0}(\mathscr{F}(p))\overset{\nu}{-----}H^{0}(\mathscr{F}_{H}(p))$$

Notiamo che σ è surgettiva se p > m, poichè $H^1(\mathscr{F}(p-2)) = 0$. Inoltre, τ è surgettiva se p > m, per il punto (2) su \mathscr{F}_H (ipotesi induttiva). Segue che $\nu(\operatorname{Im} \mu) = H^0(\mathscr{F}_H(p))$, ovvero $H^0(\mathscr{F}(p))$ è generato da $\operatorname{Im} \mu$ e da $H^0(\mathscr{F}(p-1))$.

Sia $h \in H^0(X, \mathcal{O}_X(1))$ l'equazione globale per H. Allora l'immagine di $H^0(\mathscr{F}(p-1))$ in $H^0(\mathscr{F}(p))$ è proprio $h \otimes H^0(\mathscr{F}(p-1))$, ovvero è anche in $\operatorname{Im} \mu$. Segue che μ è surgettiva, ossia il punto (2) per \mathscr{F} è verificato.

Corollario. Se \mathscr{F} è m-regolare, $\mathscr{F}(p)$ è generato come \mathcal{O}_X -modulo dalle sezioni globali $\forall p \geq m$.

Questo risultato ha stretto legame con lo studio dei divisori normalmente generati. Un fascio invertibile \mathscr{F} su X è normalmente generato se $\forall k > 0$ si ha la surgezione

$$\rho_k: (H^0(X,\mathscr{F}))^{\otimes k} \twoheadrightarrow H^0(X,\mathscr{F}^{\otimes k})$$

ossia se il modulo associato $R(\mathscr{F}) \doteq \bigoplus_{k>0} H^0(X, \mathscr{F}^{\otimes k})$ è generato in grado 1. Analogamente, un divisore D su una curva proiettiva liscia $X \subset \mathbb{P}^r$ è normalmente generato se lo è il fascio invertibile $\mathcal{O}_X[D]$.

Ci interessiamo ora al caso in cui $\mathscr{F} = \mathcal{O}_X[D]$ con $D \in \operatorname{Div}(X)$ divisore su una curva proiettiva liscia $X \subset \mathbb{P}^r$ di genere g. Ci chiediamo sotto quali condizioni il divisore D sia normalmente generato. Per il teorema di Castelnuovo-Mumford, ci basta che il fascio $\mathcal{O}_X[D]$ sia 0-regolare, ossia che $\forall i > 0$ si abbia $H^i(X, \mathcal{O}_X[D](-i)) = 0$. Notiamo da subito che, poichè

 $\dim_{\mathbb{C}} X = 1$, $H^i(X, \mathcal{O}_X[D](-i)) = 0 \ \forall i \geq 2$: resta dunque da studiare $H^1(X, \mathcal{O}_X[D](-1))$. Notiamo che $\mathcal{O}_X[D](-1) \cong \mathcal{O}_X[D] \otimes \mathcal{O}_{\mathbb{P}^r}(-1)$ è un fascio invertibile di grado $d = \deg(D) - 1$. Segue che, se $\deg(D) \geq 2g$, si ha $d \geq 2g - 1$, da cui $H^1(X, \mathcal{O}_X[D](-1)) = 0$.

Concludiamo che se $deg(D) \ge 2g$, allora il fascio coerente $\mathcal{O}_X[D]$ è 0-regolare. Applicando il teorema 5, si ottiene il seguente:

Teorema. Ogni divisore $D \in \text{Div}(X)$ di grado $\geq 2g$ è normalmente generato.

Questo risultato permette di dimostrare il teorema di Chow su superfici di Riemann compatte: ogni curva analitica nello spazio proiettivo è curva algebrica.

Concludiamo ora presentando una generalizzazione di un lemma di Castelnuovo su sistemi lineari base point free (bpf), per la cui dimostrazione si rimanda a Divisors normally generated on reduced curves di M. Franciosi [Quaderni Università di Pisa, 1998]:

Teorema. Siano \mathscr{F} e \mathscr{H} due fasci invertibili su X tali che

- 1. $H^1(\mathcal{H}\otimes\mathcal{F}^{-1})=0$;
- 2. il sistema lineare associato $|\mathcal{F}|$ è bpf.

Allora vi è la surgezione $H^0(X, \mathcal{H}) \otimes H^0(X, \mathcal{F}) \twoheadrightarrow H^0(X, \mathcal{H} \otimes \mathcal{F})$.

Notiamo soltando che, dato $D \in \text{Div}(X)$: $\deg(D) \geq 2g$, il fascio invertibile $\mathcal{O}_X[D]$ soddisfa le condizioni del teorema: infatti è invertibile, $(\mathcal{O}_X[D])^{-1} = \mathcal{O}_X[-D]$ e, per $\deg(D) \geq 2g$, |D| è bpf. Quindi, come visto prima, un divisore di grado $\geq 2g$ è normalmente generato.